首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1304篇
  免费   247篇
  国内免费   59篇
化学   434篇
晶体学   6篇
力学   60篇
综合类   2篇
数学   9篇
物理学   1099篇
  2024年   4篇
  2023年   52篇
  2022年   62篇
  2021年   84篇
  2020年   75篇
  2019年   12篇
  2018年   52篇
  2017年   89篇
  2016年   83篇
  2015年   39篇
  2014年   139篇
  2013年   45篇
  2012年   102篇
  2011年   79篇
  2010年   73篇
  2009年   76篇
  2008年   59篇
  2007年   67篇
  2006年   66篇
  2005年   46篇
  2004年   47篇
  2003年   33篇
  2002年   30篇
  2001年   18篇
  2000年   21篇
  1999年   23篇
  1998年   29篇
  1997年   18篇
  1996年   23篇
  1995年   18篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1610条查询结果,搜索用时 15 毫秒
61.
In this paper, a new type of soluble polyester/silica (PE/SiO2) hybrid was prepared by the ultrasonic irradiation process. The coupling agent γ-glycidyloxypropyltrimethoxysilane (GOTMS) was chosen to enhance the compatibility between the polyester (PE) and silica (SiO2). Furthermore, the effects of the coupling agent on the morphologies and properties of the PE/SiO2 hybrids were investigated using UV-vis and FT-IR spectroscopies and FE-SEM. The densities and solubilities of the PE/SiO2 hybrids were also measured. The results show that the size of the silica particle was markedly reduced by the introduction of the coupling agent, which made the PE/SiO2 hybrid films become transparent. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). The effects of SiO2 nanoparticles on the glass transition temperature (Tg) of the prepared nanocomposites were studied by differential scanning calorimetry (DSC). Moreover, their mechanical properties were also characterized. It can be observed that the Young's moduli (E) of the hybrid films increase linearly with the silica content. The results obtained from gas permeation experiments with a constant pressure setup showed that adding SiO2 nanoparticles to the polymeric membrane structure increased the permeability of the membranes.  相似文献   
62.
Delignification of sawdust was studied using ultrasound assisted alkali peroxide approach using longitudinal horn for the first time and the efficacy compared with more commonly used configurations of ultrasonic reactors. Comparison with the conventional approach based on stirring has also been presented to establish the process intensification benefits. Effect of different operating parameters such as sodium carbonate concentration (0.1, 0.15, 0.2, 0.25 M), hydrogen peroxide concentration (0.2, 0.4, 0.6, 0.8, 1 M) and biomass loading (2, 4, 6, 8, 10 wt%), on the efficacy of lignin extraction has been investigated for different ultrasonic reactors. The optimum conditions for probe type ultrasonic horn were established as 150 W, 50% duty cycle and 80% amplitude with optimum process conditions as Na2CO3 concentration as 0.2 M, H2O2 concentration as 1 M, biomass loading of 10 wt% and operating time of 70 min. Longitudinal horn resulted in best efficacy (both in terms of yield and energy requirements) followed by ultrasonic horn and ultrasonic bath whereas the conventional approach was least effective. The obtained lignin was also analyzed using different characterization techniques. The presence of peaks at wavelength range of 875–817, 1123–1110, and at 1599 cm−1 for the extracted sample confirmed the presence of lignin. Increase in the crystallinity index of the processed sample (maximum for longitudinal horn) also confirmed the lignin removal as lignin is amorphous in nature. Overall it has been concluded that ultrasound can be effectively used for delignification with longitudinal horn as best configuration.  相似文献   
63.
Traditional preparation of protein particles is usually complex and tedious, which is a major issue in the development of Pickering high internal phase emulsions (HIPEs). In this study, a facile and in-situ method for the preparation of food-grade Pickering HIPEs was developed using ultrasound pre-fractured casein flocs. The ultrasonic-treated casein protein and resulting Pickering HIPEs were characterised using particle size distribution, confocal laser scanning microscopy (CLSM), cryo-SEM, and rheological measurement. The results indicated that pH values of casein and ultrasonic power level were key parameters for casein protein dispersion into nanoparticles to form o/w Pickering HIPEs. In optimal conditions, the hexagons of emulsion droplets were close together, and the emulsions formed with ultrasonic caseins exhibited gel-like behaviour. Additionally, ultrasonic microscale-sized caseins (about 25 μm) disappeared upon the use of high speed homogenisation during the formation of HIPEs, while the chemical distribution revealed by confocal laser scanning microscopy indicated that the dispersive nanoparticles from casein proteins were evidently absorbed on the interface of HIPEs (cryo-SEM). These findings prove that ultrasound is an effective tool to loosen casein flocs to induce the in-situ formation of stabilised Pickering HIPEs. Overall, this work provides a green and facile route to convert edible oil into a soft solid, which has great potential for applications in biomedical materials, 3D printing technology, and various cosmetics.  相似文献   
64.
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005–982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM−1 cm−2 with excellent precision and accuracy towards the sensing of nitrofurantoin.  相似文献   
65.
Calcium alginate (CaAlg) beads were prepared using ultrasound for use in the removal of lead from natural and wastewaters by ion exchange. Ultrasound was applied in a batch mode with an ultrasonic bath or in a flow mode using an ultrasonic clamp-on device. For comparison purposes the synthesis was performed in batch mode in the absence of the ultrasound. The beads prepared using ultrasound showed a greater ion exchange capability which could be ascribed to a larger specific surface area as a result of surface roughening induced by cavitation.Scanning Electron Microscopy (SEM) images revealed that the roughening was in the form of corrugation for the product with the best ion exchange capability obtained in the flow process where preformed CaAlg droplets were subjected to ultrasound during the setting process. These beads performed 11% better for lead removal than those synthesized in the absence of ultrasound.  相似文献   
66.
In this study, we proposed ‘switching ultrasonic amplitude’ as a new strategy of applying ultrasonic energy to prepare a hybrid of buckminsterfullerene (C60) and gallium oxide (Ga2O3), C60/Ga2O3. In the proposed method, we switched the ultrasonic amplitude from 25% to 50% (by 5% amplitude per 10 min, within 1 h of ultrasonic irradiation) for the sonochemical treatment of a heterogeneous aqueous mixture of C60 and Ga2O3 by a probe-type ultrasonic horn operating at 20 kHz. We found that compared to the conventional techniques associated with high amplitude oriented ultrasonic preparation of functional materials, switching ultrasonic amplitude can better perform in preparing C60/Ga2O3 with respect to avoiding titanium (Ti) as an impurity generating from the tip erosion of a probe-type ultrasonic horn during high amplitude ultrasonic irradiation in an aqueous medium. Based on SEM/EDX analysis, the quantity of Ti (wt.%) in C60/Ga2O3 prepared by the proposed technique of switching ultrasonic amplitude was found to be 1.7% less than that prepared at 50% amplitude of ultrasonic irradiation. The particles of C60/Ga2O3 prepared by different modes of amplitude formed large (2–12 μm) aggregates in their solid phase.Whereas, in the aqueous medium, they were found to disperse in their nano sizes. The minimum particle size of the as-synthesized C60/Ga2O3 in an aqueous medium prepared by the proposed method of switching ultrasonic amplitude reached to approximately 467 nm. Comparatively, the minimum particle sizes were approximately 658 nm and 144 nm, using 25% and 50% amplitude, respectively. Additionally, Ga2O3 went under hydration during ultrasonic irradiation. Moreover, due to the electron cloud interference from C60 in the hybrid structure of C60/Ga2O3, the vibrational modes of Ga2O3 were Raman inactive in C60/Ga2O3.  相似文献   
67.
In this study, parenchyma cellulose, which was extracted from maize stalk pith as an abundant source of agricultural residues, was applied for preparing cellulose nanoparticles (CNPs) via an ultrasound-assisted etherification and a subsequent sonication process. The ultrasonic-assisted treatment greatly improved the modification of the pith cellulose with glycidyltrimethylammonium chloride, leading to a partial increase in the dissolubility of the as-obtained product and thus disintegration of sheet-like cellulose into nanoparticles. While the formation of CNPs by ultrasonication was largely dependent on the cellulose consistency in the cationic-modified system. Under the condition of 25% cellulose consistency, the longer sono-treated duration yielded a more stable and dispersible suspension of CNP due to its higher zeta potential. Degree of substitution and FT-IR analyses indicated that quaternary ammonium salts were grafted onto hydroxyl groups of cellulose chain. SEM and TEM images exhibited the CNP to have spherical morphology with an average dimeter from 15 to 55 nm. XRD investigation revealed that CNPs consisted mainly of a crystalline cellulose Ι structure, and they had a lower crystallinity than the starting cellulose. Moreover, thermogravimetric results illustrated the thermal resistance of the CNPs was lower than the pith cellulose. The optimal CNP with highly cationic charges, good stability and acceptable thermostability might be considered as one of the alternatively renewable reinforcement additives for nanocomposite production.  相似文献   
68.
The present study was conducted to evaluate the effect of ultrasonic (US) treatment on chemical characteristics and antioxidant potential of pulps obtained from eight mango varieties indigenous to Pakistan. There was a significant (p < 0.05) effect of varieties and US treatment on chemical characteristics i.e. pH, acidity, TSS, vitamin C contents, total sugars (%), reducing sugars (%) and non-reducing sugars (%). Microstructure evaluation of pulp from all mango varieties showed deshaped middle lamella and cell wall of cells after 8 min of US treatment. At 4 min of US treatment as per shaped cell wall and middle lamella, the chemical characteristics and antioxidant potential were higher. The total phenolics (TP), flavonoids (TF) and total antioxidant activity (TAA) of pulp from most varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment i.e. 8 and 12 min. The maximum value (314.17 μg AAE/mL pulp) of DPPH was shown by pulp from Dosehri and the minimum (158.67 μg AAE/mL pulp) was found in pulp from Langra before US treatment. The DPPH values of pulp from most of the varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment but pulp from Langra showed increasing trend after 8 min of US treatment which decreased after 12 min of treatment. The total anthocyanin (TA) values of pulp from Chaunsa, Dosehri, Sindhri, Gulab Khas and Langra increased abruptly after US treatment for 4 min but decreased successively after subsequent treatment. The pulp from Desi, Anwar Ratol, Gulab Khas and Langra showed an abrupt decrease in TA after 8 min of US treatment. An increasing trend of values of total carotenoids (TC) was shown by pulp from all mango varieties after 4 min of US treatment but decreasing trend was observed with subsequent increase in time of US treatment.  相似文献   
69.
The traveling wave ultrasonic stator is normally fabricated with teeth. The tooth geometry improves the driving speed, but it creates natural frequency splitting and mode contamination, especially a distorted traveling wave. A dynamic model of a stepped-plate periodic stator is developed to examine the distortion. The stator is treated as an annular supported by a thin mid plate, and the support stiffness is formulated by using equivalent energy principle. The effects of the tooth and mid plate on the natural frequency and vibration mode are examined by using the perturbation method. The rules governing the frequency splitting, frequency perturbation as well as mode contamination are also identified. The traveling wave response and elliptical trace on stator surface are obtained by using the mode superposition method and they are proved to be distorted due to the tooth geometry. The response at the repeated doublets becomes coupled forward and backward traveling waves, but that at the split doublets becomes coupled forward traveling, standing and backward traveling waves. The results indicate that the tooth mass instead of the stiffness decreases the vibration amplitude and driving speed of the dominant wave, but their effects are different at the repeated and split doublets. Inspection of the model implies that the distortion can be suppressed by using a suitable combination of the wavenumber, tooth count, tooth height and occupying fraction. Numerical calculations are carried out to demonstrate the tooth geometry effect on the transient waveform, driving speed and elliptical trace. The optimization of the tooth geometry that can help achieve a purer traveling wave is discussed.  相似文献   
70.
The degradation reactions of chlorinated polypropylene (CPP) in toluene under ultrasonic irradiation were studied. The Mark–Houwink equation acquired from fractional precipitations was also suitable for estimating the molecular weight of degraded CPP. An objective standard was proposed for judging the solution behaviour of CPP in solvents by the study on the relative solubility of CPP before and after degradation. Then Hansen three-dimensional solubility parameters and the total parameter of CPP were obtained by optimization calculation in terms of the criterion proposed here. It was proved that the total parameter of CPP is creditable by the turbidity method. Compared to other standards, the result obtained from the proposed standard accorded well with the standard of complete miscibility suggested by Flory–Huggins for polymers and solvents as well as the objective reality. This standard may provide a reference for other polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号